../_images/logo_bone.png

Introduction#

VAMToolbox is a Python library to support the generation of the light projections and the control of a DLP projector for tomographic volumetric additive manufacturing. It provides visualization, various optimization techniques, and flexible projection geometries to assist in the creation of sinograms and reconstructions for simulated VAM.

Background#

Volumetric additive manufacturing (VAM) is a form of resin-based additive manufacturing or 3D printing which builds objects volumetrically, or all at once, as opposed to layer-by-layer like conventional stereolithography [Shusteff et al., 2017, Kelly et al., 2019, Loterie et al., 2020]. Tomographic VAM (also known as computed axial lithography (CAL)) is a subset of VAM which functions like inverse X-ray computed tomography and intensity modulated radiation therapy [Kelly et al., 2019, Loterie et al., 2020, Bernal et al., 2019, Cook et al., 2020, Bhattacharya et al., 2021, Rackson et al., 2021, Orth et al., 2021, Schwartz et al., 2022, Rackson et al., 2022, Wang et al., 2022, Kollep et al., 2022, Toombs et al., 2022]. A photosensitive material is exposed by digital light projections from many azimuthal angles such that that the cumulative light dose surpasses a dose threshold and solidifies or makes the material insoluble in developer solution in a prescribed volume.

Computational optimization or filtering of the digital light projections is required to minimize the background exposure of the material surrounding the prescribed target volume. Increasing the light dose contrast means that the printed object can be more easily removed from the surrounding material. Several optimization algorithms have been developed, from traditional Ram-Lak filtering to second order methods [Kelly et al., 2019, Loterie et al., 2020, Bhattacharya et al., 2021, Rackson et al., 2021]. These are described in more detail in Optimization.

Citation#

If you use this package in your research, please cite it as … TBD …

If you use any of the following optimization algorithms in your research, please cite the corresponding research:

Bibliography#

[1]

Maxim Shusteff, Allison E.M. Browar, Brett E. Kelly, Johannes Henriksson, Todd H. Weisgraber, Robert M. Panas, Nicholas X. Fang, and Christopher M. Spadaccini. One-step volumetric additive manufacturing of complex polymer structures. Science Advances, 2017. doi:10.1126/sciadv.aao5496.

[2] (1,2,3,4)

Brett E. Kelly, Indrasen Bhattacharya, Hossein Heidari, Maxim Shusteff, Christopher M. Spadaccini, and Hayden K. Taylor. Volumetric additive manufacturing via tomographic reconstruction. Science, 363(6431):1075–1079, 2019. doi:10.1126/science.aau7114.

[3] (1,2,3)

Damien Loterie, Paul Delrot, and Christophe Moser. High-resolution tomographic volumetric additive manufacturing. Nature Communications, 11(1):852, dec 2020. URL: http://dx.doi.org/10.1038/s41467-020-14630-4 http://www.nature.com/articles/s41467-020-14630-4, doi:10.1038/s41467-020-14630-4.

[4]

Paulina Nuñez Bernal, Paul Delrot, Damien Loterie, Yang Li, Jos Malda, Christophe Moser, and Riccardo Levato. Volumetric Bioprinting of Complex Living-Tissue Constructs within Seconds. Advanced Materials, 2019. doi:10.1002/adma.201904209.

[5]

Caitlyn C. Cook, Erika J. Fong, Johanna J. Schwartz, Dominique H. Porcincula, Allison C. Kaczmarek, James S. Oakdale, Bryan D. Moran, Kyle M. Champley, Charles M. Rackson, Archish Muralidharan, Robert R. McLeod, and Maxim Shusteff. Highly Tunable Thiol‐Ene Photoresins for Volumetric Additive Manufacturing. Advanced Materials, 32(47):2003376, nov 2020. URL: https://onlinelibrary.wiley.com/doi/10.1002/adma.202003376, doi:10.1002/adma.202003376.

[6] (1,2,3)

Indrasen Bhattacharya, Joseph Toombs, and Hayden Taylor. High fidelity volumetric additive manufacturing. Additive Manufacturing, 47:102299, 2021. URL: https://doi.org/10.1016/j.addma.2021.102299, doi:10.1016/j.addma.2021.102299.

[7] (1,2,3)

Charles M. Rackson, Kyle M. Champley, Joseph T. Toombs, Erika J. Fong, Vishal Bansal, Hayden K. Taylor, Maxim Shusteff, and Robert R. McLeod. Object-space optimization of tomographic reconstructions for additive manufacturing. Additive Manufacturing, 48:102367, dec 2021. URL: https://linkinghub.elsevier.com/retrieve/pii/S2214860421005212, doi:10.1016/j.addma.2021.102367.

[8]

Antony Orth, Kathleen L. Sampson, Kayley Ting, Jonathan Boisvert, and Chantal Paquet. Correcting ray distortion in tomographic additive manufacturing. Optics Express, 29(7):11037, 2021. doi:10.1364/oe.419795.

[9]

Johanna Jesse Schwartz, Dominique Porcincula, Caitlyn Cook, Erika J Fong, and Maxim Shusteff. Volumetric Additive Manufacturing of Shape Memory Polymers. Polymer Chemistry, 2022. doi:10.1039/d1py01723c.

[10]

Charles M. Rackson, Joseph T. Toombs, Martin P. De Beer, Caitlyn C. Cook, Maxim Shusteff, Hayden K. Taylor, and Robert R. McLeod. Latent image volumetric additive manufacturing. Optics Letters, 47(5):1279, mar 2022. URL: https://opg.optica.org/abstract.cfm?URI=ol-47-5-1279, doi:10.1364/OL.449220.

[11]

Bin Wang, Einstom Engay, Peter R. Stubbe, Saeed Z. Moghaddam, Esben Thormann, Kristoffer Almdal, Aminul Islam, and Yi Yang. Stiffness control in dual color tomographic volumetric 3D printing. Nature Communications, 13(1):1–10, 2022. doi:10.1038/s41467-022-28013-4.

[12]

Max Kollep, Georgia Konstantinou, Jorge Madrid-Wolff, Antoine Boniface, Lorenz Hagelüken, Pradeep Vallachira Warriam Sasikumar, Gurdial Blugan, Paul Delrot, Damien Loterie, Juergen Brugger, and Christophe Moser. Tomographic Volumetric Additive Manufacturing of Silicon Oxycarbide Ceramics. Advanced Engineering Materials, 2101345:2101345, 2022. arXiv:2109.12680, doi:10.1002/adem.202101345.

[13]

Joseph T. Toombs, Manuel Luitz, Caitlyn C. Cook, Sophie Jenne, Chi Chung Li, Bastian E. Rapp, Frederik Kotz-Helmer, and Hayden K. Taylor. Volumetric additive manufacturing of silica glass with microscale computed axial lithography. Science, 376(6590):308–312, apr 2022. arXiv:2110.01651, doi:10.1126/science.abm6459.